Abstract

Objective. Energy consumption is a critical issue in resource-constrained wireless neural recording applications with limited data bandwidth. Compressed sensing (CS) has emerged as a powerful framework in addressing this issue owing to its highly efficient data compression procedure. In this paper, a CS-based approach termed simultaneous analysis non-convex optimization (SANCO) is proposed for large-scale, multi-channel local field potentials (LFPs) recording. Approach. The SANCO method consists of three parts: (1) the analysis model is adopted to reinforce sparsity of the multi-channel LFPs, therefore overcoming the drawbacks of conventional synthesis models. (2) An optimal continuous order difference matrix is constructed as the analysis operator, enhancing the recovery performance while saving both computational resources and data storage space. (3) A non-convex optimizer that can by efficiently solved with alternating direction method of multipliers is developed for multi-channel LFPs reconstruction. Main results. Experimental results on real datasets reveal that the proposed approach outperforms state-of-the-art CS methods in terms of both recovery quality and computational efficiency. Significance. Energy efficiency of the SANCO make it an ideal candidate for resource-constrained, large scale wireless neural recording. Particularly, the proposed method ensures that the key features of LFPs had little degradation even when data are compressed by 16x, making it very suitable for long term wireless neural recording applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call