Abstract
This paper addresses the problem of finding frequent closed patterns (FCPs) from very dense data sets. We introduce two compressed hierarchical FCP mining algorithms: C-Miner and B-Miner. The two algorithms compress the original mining space, hierarchically partition the whole mining task into independent subtasks, and mine each subtask progressively. The two algorithms adopt different task partitioning strategies: C-Miner partitions the mining task based on Compact Matrix Division, whereas B-Miner partitions the task based on Base Rows Projection. The compressed hierarchical mining algorithms enhance the mining efficiency and facilitate a progressive refinement of results. Moreover, because the subtasks can be mined independently, C-Miner and B-Miner can be readily paralleled without incurring significant communication overhead. We have implemented C-Miner and B-Miner, and our performance study on synthetic data sets and real dense microarray data sets shows their effectiveness over existing schemes. We also report experimental results on parallel versions of these two methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.