Abstract

More and more advanced technologies have become available to collect and integrate an unprecedented amount of data from multiple sources, including GPS trajectories about the traces of moving objects. Given the fact that GPS trajectories are vast in size while the information carried by the trajectories could be redundant, we focus on trajectory compression in this article. As a systematic solution, we propose a comprehensive framework, namely, COMPRESS ( <underline>Com</underline>prehensive <underline>P</underline>aralleled <underline>R</underline>oad-Network-Based Trajectory Compr<underline>ess</underline>ion ), to compress GPS trajectory data in an urban road network. In the preprocessing step, COMPRESS decomposes trajectories into spatial paths and temporal sequences, with a thorough justification for trajectory decomposition. In the compression step, COMPRESS performs spatial compression on spatial paths, and temporal compression on temporal sequences in parallel. It introduces two alternative algorithms with different strengths for lossless spatial compression and designs lossy but error-bounded algorithms for temporal compression. It also presents query processing algorithms to support error-bounded location-based queries on compressed trajectories without full decompression. All algorithms under COMPRESS are efficient and have the time complexity of O (| T |), where | T | is the size of the input trajectory T . We have also conducted a comprehensive experimental study to demonstrate the effectiveness of COMPRESS, whose compression ratio is significantly better than related approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.