Abstract

A FEFLOW three-dimensional (3D) groundwater model is developed to enhance the understanding of groundwater processes in the complex alluvial stratigraphy of Maules Creek Catchment (New South Wales, Australia). The aquifer vertical heterogeneity is replicated by indexing 204 lithological logs into units of high or low hydraulic conductivity, and by developing a 3D geological conceptual model with a vertical resolution based on the average lithological unit thickness for the region. The model mesh is populated with the indexed geology using nearest neighbour gridding. The calibrated model is successful in simulating the observed flow dynamics and in quantifying the important water-budget components. This indicates that the lateral groundwater flow from the mountainous region is the main inflow component of the system. Under natural conditions, the Namoi River acts as a sink of water, but groundwater abstraction increasingly removes a large amount of water each year causing dewatering of the system. The pumping condition affects the river–aquifer interaction by reversing the flow, from gaining to losing river conditions during the simulation period. The procedure is relevant for the development of groundwater models of heterogeneous systems in order to improve the understanding of the interplay between aquifer architecture and groundwater processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.