Abstract
PurposeGastric cancer (GC) is the second leading cause of cancer-related deaths worldwide. tRNA-derived fragments (tRFs) have been identified as potential biomarkers and cancer therapeutic targets. However, the influence of tRFs on GC remains unknown. The key tRFs were researched in vitro function and mechanism.Patients and MethodsHere, differentially expressed tRFs between GC and paracancerous tissues were identified by small RNA sequencing, and the role of key tRF was evaluated in vitro.ResultsEight tRFs were significantly differentially expressed between GC tissues and adjacent tissues: five were significantly upregulated and three were downregulated in GC tissues. The results of target gene prediction and functional enrichment analysis showed that tRFs with different expressions were mainly involved in cell adhesion and connection, cell migration, wingless-type (Wnt), mitogen-activated protein kinase (MAPK), and cancer signaling pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) indicated that the expression of tRF-24-V29K9UV3IU and its target genes (CCND2, FZD3, and VANGL1) in GC tissues and cells was decreased compared with those in the control group. Importantly, overexpression of tRF-24-V29K9UV3IU inhibited cell proliferation, migration and invasion, while promoted cell apoptosis of GC cells.ConclusionThis study suggests that tRF-24-V29K9UV3IU may hinder GC tumor progression by inhibiting cell proliferation, migration, invasion, while promoting cell apoptosis by regulating the Wnt signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.