Abstract

Simple SummaryTo identify potential genetic markers for evaluating hypermutated cancers, we investigated driver mutations, mutational signatures, tumor-associated neoantigens, and molecular cancer evolution in the genetic variants of 533 cancer patients with six different cancer types. Driver mutations, including RET, CBL, and DDR2 gene mutations, were identified in the hypermutated cancers. Cancer driver mutations and mutational signatures are associated with sensitivity or resistance to immunotherapy, representing potential genetic markers in hypermutated cancers. Using computational predictions, we identified two tumor-associated neoantigens. Sequential mutations were used in a logistic model to predict hypermutated cancers according to genomic evolution. The sequential mutation order and coexisting genetic mutations were found to influence the hypermutation phenotype. Based on our observations, we developed a new concept for hypermutated cancers, whereby sequential mutations are significant for hypermutated cancers, which are mutationally heterogeneous. Through the comprehensive assessments of cancer gene panels, mutational pattern analysis was conducted as a basis for providing recommendations regarding therapeutic strategies for hypermutated cancer patients.Tumor heterogeneity results in more than 50% of hypermutated cancers failing to respond to standard immunotherapy. There are numerous challenges in terms of drug resistance, therapeutic strategies, and biomarkers in immunotherapy. In this study, we analyzed primary tumor samples from 533 cancer patients with six different cancer types using deep targeted sequencing and gene expression data from 78 colorectal cancer patients, whereby driver mutations, mutational signatures, tumor-associated neoantigens, and molecular cancer evolution were investigated. Driver mutations, including RET, CBL, and DDR2 gene mutations, were identified in the hypermutated cancers. Most hypermutated endometrial and pancreatic cancer patients carry genetic mutations in EGFR, FBXW7, and PIK3CA that are linked to immunotherapy resistance, while hypermutated head and neck cancer patients carry genetic mutations associated with better treatment responses, such as ATM and BRRCA2 mutations. APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and DNA repair defects are mutational drivers that are signatures for hypermutated cancer. Cancer driver mutations and other mutational signatures are associated with sensitivity or resistance to immunotherapy, representing potential genetic markers in hypermutated cancers. Using computational prediction, we identified NF1 p.T700I and NOTCH1 p.V2153M as tumor-associated neoantigens, representing potential therapeutic targets for immunotherapy. Sequential mutations were used to predict hypermutated cancers based on genomic evolution. Using a logistic model, we achieved an area under the curve (AUC) = 0.93, accuracy = 0.93, and sensitivity = 0.81 in the testing set. The sequential patterns were distinct among the six cancer types, and the sequential mutation order of MSH2 and the coexisting BRAF genetic mutations influenced the hypermutated phenotype. The TP53~MLH1 and NOTCH1~TET2 sequential mutations impacted colorectal cancer survival (p-value = 0.027 and 0.0001, respectively) by reducing the expression of PTPRCAP (p-value = 1.06 × 10−6) and NOS2 (p-value = 7.57 × 10−7) in immunity. Sequential mutations are significant for hypermutated cancers, which are characterized by mutational heterogeneity. In addition to driver mutations and mutational signatures, sequential mutations in cancer evolution can impact hypermutated cancers. They characterize potential responses or predictive markers for hypermutated cancers. These data can also be used to develop hypermutation-associated drug targets and elucidate the evolutionary biology of cancer survival. In this study, we conducted a comprehensive analysis of mutational patterns, including sequential mutations, and identified useful markers and therapeutic targets in hypermutated cancer patients.

Highlights

  • All cancers result from the accumulation of genetic mutations

  • Except for the TP53 genetic mutations, which were found in all cancer types, we observed the highest percentages of mutations in ERBB2 and PIK3CA in breast cancer, KRAS and PIK3CA in colorectal cancer, PTEN and PIK3CA in endometrial cancer, CDKN2A and HRAS in oral cancer, BRCA1 and BRCA2 in ovarian cancer, and KRAS and CDKN2A in pancreatic cancer

  • We found that the frequency of genetic mutations was an important mutation feature in cancers, and frequent mutation was notable in The Cancer Genome Atlas (TCGA) samples

Read more

Summary

Introduction

All cancers result from the accumulation of genetic mutations. Hypermutated cancers, constituting 5–10% of all cases of cancer, are characterized by a high tumor mutational burden (TMB), which is a useful biomarker for predicting the immune checkpoint inhibitor (ICI) response in cancer patients [1]. Immunotherapies have exhibited variable efficacy in human malignancies [2]. More than 50% of hypermutated cancer patients fail to respond to immunotherapy. Some cancer subtypes still have a poor response to therapy that cannot be predicted by TMB. Intra- or intertumor heterogeneity may contribute to inferior clinical outcomes and drug resistance in hypermutated cancers [3]. Exploring the mutational landscape and genomic evolution of cancers can provide insight into the biology of tumor heterogeneity

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call