Abstract

Protein fold is defined by a spatial arrangement of three types of secondary structures (SSs) including helices, sheets, and coils/loops. Current methods that predict SS from sequences rely on complex machine learning-derived models andprovide the three-state accuracy (Q3) at about 82%. Further improvements in predictive quality could be obtained with a consensus-based approach, which so far received limited attention. We perform first-of-its-kind comprehensive design of a SS consensus predictor (SScon), in which we consider 12 modern standalone SS predictors and utilize Support Vector Machine (SVM) to combine their predictions. Using a large benchmark data-set with 10 random training-test splits, we show that a simple, voting-based consensus of carefully selected base methods improves Q3 by 1.9% when compared to the best single predictor. Use of SVM provides additional 1.4% improvement with the overall Q3 at 85.6% and segment overlap (SOV3) at 83.7%, when compared to 82.3 and 80.9%, respectively, obtained by the best individual methods. We also show strong improvements when the consensus is based on ab-initio methods, with Q3 = 82.3% and SOV3 = 80.7% that match the results from the best template-based approaches. Our consensus reduces the number of significant errors where helix is confused with a strand, provides particularly good results for short helices and strands, and gives the most accurate estimates of the content of individual SSs in the chain. Case studies are used to visualize the improvements offered by the consensus at the residue level. A web-server and a standalone implementation of SScon are available at http://biomine.ece.ualberta.ca/SSCon/.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call