7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.firesaf.2017.04.032
Copy DOIJournal: Fire Safety Journal | Publication Date: Apr 27, 2017 |
Citations: 36 | License type: publisher-specific-oa |
To date, due to difficulties in making measurements during wildfires, much of what is known about firebrand showers and the subsequent fire spotting comes from mathematical modeling of the lofting and downwind transport of firebrands. However, these models lack experimental validation. Hence, the coupled lofting and downwind transport of non-combusting rod-like firebrands is experimentally modeled by releasing them through the velocity field of a large scale boundary layer wind tunnel. Complete trajectories of model firebrands are resolved using image processing algorithms. The results show a strong positive correlation between the maximum rise height (zmax) and the landing location (xl) of model firebrands. In addition, it is shown that, given the velocity field, the empirical probability density functions (PDF) of xl/zmax are similar regardless of the firebrands' aspect ratio. This implies that the lofting and downwind transport processes cannot be decoupled in transport models. Analysis of the data reveals that, the larger the aspect ratio of firebrands, the more sensitive their landing locations are to the variability in the velocity field through which they are released. The data set presented herein serves as the most comprehensive experimental evidence for not only firebrand transport studies but also for validating mathematical models for the flight of rod-like debris/brands within the velocity field of other extreme events such as hurricanes.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.