Abstract

The preparation of high-purity sulfur and pyrrhotite by pyrolysis holds great potential to realize the high-value utilization of pyrite concentrate (FeS2), i.e., a by-product during the flotation of sulfide ore. In this study, the pyrrhotite obtained from the pyrolysis of pyrite concentrate was taken as the study object, and the effects of acid types, initial acidity, leaching time, leaching temperature, oxygen pressure, and liquid-to-solid ratio on the leaching behavior of pyrrhotite under oxygen pressure, were explored. The results show that elemental sulfur and hematite-based iron residue can be obtained by oxygen pressure leaching of pyrrhotite. It is found that the optimal experimental conditions for pyrrhotite oxygen pressure leaching are hydrochloric acid with 0.8 mol/L of initial acidity, 5 h of leaching time, 0.8 MPa of oxygen partial pressure, and 9:1 of liquid to solid ratio at 150 °C; moreover, the yield of sulfur reached 88.37%. Under optimal conditions, the leaching ratios of Fe, Pb, and Zn were 19.8%, 92.25%, and 99.11%, respectively. The sieved leaching residue was roasted at a low temperature of 500 °C, where the grade of Fe in the obtained hematite iron powder was 61.46%, and the grades of Pb, Zn, and S were 0.082%, 0.024%, and 0.1%. Clearly, the results meet well with the standard of the first grade of pyrite cinder, and this process realizes the comprehensive recovery of Fe and S resources in pyrolysis slag, which provides a superb technical route for the high-value utilization of pyrite concentrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.