Abstract

BackgroundChronic immune activation plays a significant role in the pathogenesis and disease progression of human immunodeficiency virus (HIV), and the existing interventions to address this issue are limited. In a phase II clinical trial, (5R)-5-hydroxytriptolide (LLDT-8) demonstrated promising potential in enhancing CD4+ T cell recovery. However, the therapeutical effects of LLDT-8 remained to be systemic explored. MethodsTo assess the treatment effects of LLDT-8, we conducted flow cytometry and RNA-seq analyses on eight Chinese rhesus monkeys infected with simian immunodeficiency virus (SIV). Additionally, we performed comprehensive transcriptomic analyses, including cross-sectional and longitudinal differentially expressed gene (DEG) analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution analysis using peripheral blood mononuclear cell (PBMC) samples from 14-time points. These findings were further validated with RNA-seq analysis on patients who received LLDT-8 treatment, along with in vitro cellular experiments using human PBMCs. ResultsFlow cytometry analysis revealed that LLDT-8 treatment significantly reduced the percentage of HLA-DR+CD38+CD8+ T cells in SIV-infected rhesus monkeys (P < 0.001). The cross-sectional and longitudinal analysis identified 2531 and 1809 DEGs, respectively. GSEA analysis indicated that LLDT-8 treatment led to significant downregulation of proliferation-related pathways, such as E2F targets, G2M checkpoint, and mitotic spindle pathways. WGCNA analysis identified two modules and 202 hub genes associated with CD8 activation levels. Deconvolution analysis showed a significant decrease in the proportion of CD8+ T cells and activated CD4+ T cells during LLDT-8 treatment. Gene ontology results demonstrated that the common DEGs between LLDT-8-treated patients and rhesus monkeys were primarily enriched in cell activation and cell cycle progression. Furthermore, in vitro cellular experiments validated the consistent impact of LLDT-8 in inhibiting proliferation, activation (HLA-DR and CD38 expression), exhaustion (PD-1 expression), and IFN-γ production in human CD4+ and CD8+ T cells. ConclusionLLDT-8 exhibited notable efficacy in alleviating immune activation in both an in vivo animal model and in vitro human cell experiments. These findings suggest that LLDT-8 may hold potential as a drug for managing systemic immune activation associated with SIV/HIV infection, warranting further prospective clinical exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call