Abstract

BackgroundAphid (Macrosiphoniella sanbourni) stress drastically influences the yield and quality of chrysanthemum, and grafting has been widely used to improve tolerance to biotic and abiotic stresses. However, the effect of grafting on the resistance of chrysanthemum to aphids remains unclear. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze the self-rooted grafted chrysanthemum (Chrysanthemum morifolium T. ‘Hangbaiju’) and the grafted Artermisia-chrysanthemum (grafted onto Artemisia scoparia W.) transcription response to aphid stress.ResultsThe results showed that there were 1337 differentially expressed genes (DEGs), among which 680 were upregulated and 667 were downregulated, in the grafted Artemisia-chrysanthemum compared to the self-rooted grafted chrysanthemum. These genes were mainly involved in sucrose metabolism, the biosynthesis of secondary metabolites, the plant hormone signaling pathway and the plant-to-pathogen pathway. KEGG and GO enrichment analyses revealed the coordinated upregulation of these genes from numerous functional categories related to aphid stress responses. In addition, we determined the physiological indicators of chrysanthemum under aphid stress, and the results were consistent with the molecular sequencing results. All evidence indicated that grafting chrysanthemum onto A. scoparia W. upregulated aphid stress responses in chrysanthemum.ConclusionIn summary, our study presents a genome-wide transcript profile of the self-rooted grafted chrysanthemum and the grafted Artemisia-chrysanthemum and provides insights into the molecular mechanisms of C. morifolium T. in response to aphid infestation. These data will contribute to further studies of aphid tolerance and the exploration of new candidate genes for chrysanthemum molecular breeding.

Highlights

  • Aphid (Macrosiphoniella sanbourni) stress drastically influences the yield and quality of chrysanthemum, and grafting has been widely used to improve tolerance to biotic and abiotic stresses

  • To unravel the molecular mechanisms involved in aphid resistance, three sampling points during a 4-d experimental period were selected for transcriptome analysis

  • Flavonoid accumulation was observed in the leaves of Cm / As and Cm / Cm, and a higher concentration of flavonoids was observed in Cm / As than in Cm / Cm (Fig. 6b)

Read more

Summary

Introduction

Aphid (Macrosiphoniella sanbourni) stress drastically influences the yield and quality of chrysanthemum, and grafting has been widely used to improve tolerance to biotic and abiotic stresses. The effect of grafting on the resistance of chrysanthemum to aphids remains unclear. Grafting is still widely used today to improve the abiotic stress tolerance of many types of plants, for example, in the cultivation of grape vines, apples, Prunus spp. and vegetables, by regulating many metabolic pathways and stress response processes [7, 8]. The exact mechanisms and functions of this rootstock under biotic stress remain unclear. The inherent genetic characteristics, tissue structures, and physiological and biochemical resistance mechanisms are intertwined, thereby enabling the grafted plants to exhibit enhanced resistance to pests and diseases [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call