Abstract

In this study, thermodynamic modeling and simulations were used to optimize the design point performance of the Allam cycle. The topic fits perfectly with the strategies for power sector decarbonization toward net zero emission. In fact, it offers an environmentally friendlier alternative to natural gas combined cycle (NGCC) plants. The focus is on oxyfuel combustion that, combined with supercritical CO2 (sCO2) stream as working fluid, produces high-purity CO2, electricity, and water by means of a highly recuperated Brayton cycle. The former is ready for sequestration, pipeline injection, or other applications, such as enhanced oil recovery or industrial processes. Being designed within the last decade, large-scale plants are poorly documented in the published literature and not yet ready for operation. Accordingly, a thermodynamic model was developed for a net power (Pn) output of 300 MW. After validation against the little data available from academic studies, simulation sets were conceived to assess the impact of main process parameters on cycle efficiency. To that end, operating conditions of the compressor, turbine, and air separation unit (ASU) were varied in a parametric analysis, preparatory to performance optimization. For the chosen layout, the maximum net electric efficiency (ηel,n) was found to be 50.4%, without thermal recovery from ASU.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call