Abstract

An experimental and computational study of the thermochemical and structural properties of ethylenethiourea (ETU) has been carried out. The enthalpies of combustion and sublimation, measured respectively by rotating-bomb combustion calorimetry and Calvet microcalorimetry, yielded the gas-phase enthalpy of formation of ETU at T = 298.15 K. This latter parameter was also derived from high-level molecular orbital calculations at the G3(MP2)//B3LYP level of theory, leading to a value in excellent agreement with the one obtained from experimental data. With the purpose of evaluating the influence of the ring size in the enthalpy of formation of cyclic N,N′-thiourea derivatives, the calculation of the enthalpy of formation of N,N′-trimethylenethiourea (MTU) was performed using the G3(MP2)//B3LYP approach. The effects of substituents (carbonyl and thiocarbonyl) on the molecular stability of several N-alkyl (cyclic) ureas/thioureas were also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call