Abstract
Dissociative photoionization of quinoline induced by vacuum ultraviolet radiation is investigated using photoelectron-photoion coincidence spectroscopy. Branching ratios of all the detectable fragment ions are measured as a function of internal energy ranging from 2 to 30eV. A specific generation hierarchy is observed in the breakdown curves of a set of dissociation channels. Moreover, a careful comparison of the breakdown curves of fragments among the successive generations allowed to establish a decay sequence in the fragmentation of quinoline cation. This enabled us to revisit and refine the understanding of the first generation decay and reassign the origin of a few of the higher generation decay products of quinoline cation. With the help of the accompanying computational work (reported concurrently), we have demonstrated the dominance of two different HCN elimination pathways over previously interpreted mechanisms. For the first time, a specific pathway for acetylene elimination is identified in quinoline+ and the role of isomerization in both acetylene as well as hydrogen cyanide loss is also demonstrated. The experiment also established that the acetylene elimination exclusively occurs from the non-nitrogen containing rings of quinoline cation. The formation of a few astronomically important species is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.