Abstract

Honey bees forage across a large area, continually scouting the local landscape for ephemeral food resources. Beekeepers often rely on flowering plants in and around irrigated farmland to maintain their colonies during dry seasons, despite the potential risk of pesticide exposure. Recent declines in pollinator abundance and diversity have focused attention on the role of pesticides and their effects on honey bee health. This investigation examined two types of landscapes within a two-mile (3.2 km) radius of honey bee colonies: an intensive agricultural setting and a rural setting without intensive agriculture. More than 10,000 acres of agricultural land was surveyed to quantify the area of cultivated crops and the area treated with pesticides, including seed treatments and foliar applications of insecticides. Samples of honey, bee bread (stored pollen), beeswax, and adult bees were collected from hives in both landscape types and screened for pesticide residues to determine if foraging bees were transporting pesticides to hives. Some samples of bee bread and honey did contain pesticide residues, but these were below known lethal dose (LD50) levels for honey bees. Beeswax samples contained the highest levels of contamination, but most were still relatively low. Samples were screened for 174 common agricultural pesticides and metabolites, but only 26 compounds were detected during the two-year study. These included one defoliant, one insect growth regulator, five herbicides, six fungicides, six insecticides never used in beekeeping, and five insecticides/miticides and their metabolites, which are used in beekeeping and for various other agricultural purposes, as well as two miticides exclusively used by beekeepers to control Varroa destructor. Bee colonies foraging in agricultural landscapes are potentially exposed to numerous pesticide applications. While the residues detected in this study did not pose an acute lethal risk to adult honey bees, this study did not measure sublethal effects on bee colony health or performance, which merit further investigation.

Highlights

  • Honey bees (Apis meliffera L.) are known to forage for food across an extensive landscape, up to three miles (5 km) or more from their hives [1]

  • An apiary (“High-Ag” site) was established in April 2014, in an area where more than 80% of the landscape was under cultivation using conventional agricultural crop production methods and pesticide use

  • Crops in the High-Ag area included a predominant commercial production of soybeans, corn, rice, cotton, and grain sorghum, as well as small areas of green beans, some commercial fish farming, woodland, wetlands, pasture, and fallow fields, which are typical of this area

Read more

Summary

Introduction

Honey bees (Apis meliffera L.) are known to forage for food across an extensive landscape, up to three miles (5 km) or more from their hives [1]. While foraging distances are highly variable in different landscapes and in different seasons, as long as adequate resources are available, foragers tend to remain closer to their hives in order to conserve energy, within an average distance of about one mile (1.6 km) or less, and sometimes only a few hundred yards in agricultural settings with abundant food [2,3,4]. The floral resources available to bees are often ephemeral, with some species blooming for only a short time each season. For these reasons, bees continuously scout their territory to readily and efficiently exploit new sources of food before competitors [1]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.