Abstract

The growing demand for a better understanding of the effects of chemical mixtures on human health has fostered the need for extensive estimation of uptake rates from identified sources and/or biomonitoring, which has encouraged the development of analyte- and matrix-independent analytical methods. In this paper, we report a comprehensive sample treatment platform for the efficient extraction and interference removal in the determination of twenty-one bisphenols and derivatives (log Kow from 1.254 to 6.564) in a variety of human exposure sources and biological fluids. Treatment of both liquid (canned beverages, urine and serum) and solid (canned food, dust) samples was based on the use of low volumes (190–200 μL) of a hexanol-based supramolecular solvent having properties of restricted access materials. The efficient extraction of bisphenol and derivatives (absolute recoveries 70–114%) was due to the mixed-mode mechanisms (hydrogen bonding, polar and dispersion interactions) and the huge number of binding sites offered by the supramolecular solvent with properties of restricted access materials for solute solubilization. Signal suppression or enhancement (SSE) values kept in the range 78–116% for samples encompassing a wide range of macromolecules content (e.g. protein, fat, carbohydrates, etc.). Quantification was carried out by liquid chromatography, electrospray tandem mass spectrometry using external calibration. Method quantitation limits for bisphenols in liquid and solid samples were in the interval 0.019–0.19 μg L−1 and 0.06–0.81 μg kg−1. The method was applied to the determination of bisphenols and derivatives in thirteen human exposure sources and biological fluids. Only four bisphenols out of twenty-one were not found in the analyzed samples. This supramolecular solvent-based bisphenol- and matrix-independent method constitutes a valuable strategy in terms of analytical and operational characteristics for the assessment of human exposure to mixtures of bisphenols and derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.