Abstract

The effects of total ionizing on a 180-nm CMOS technology are comprehensively studied. Firstly, we show new results on the hump effect which has strong relationship to the STI corner oxide thickness. Secondly, the leakage current degradation in various devices after radiation is investigated. For the intra-device leakage, both body doping concentration and STI corner thickness play very important roles. For the inter-device leakage, due to the low electric field at the STI bottom, it is found to be insensitive to ionizing radiation. Thirdly, a method for extracting the effective threshold voltage of the sidewall parasitic transistor is proposed by studying the leakage output characteristics. Finally, we find that the drain saturation current increases in NMOS transistors after radiation, especially in the narrow-channel ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.