Abstract

The accumulation of coal gangue (CG) from coal mining is an important source of heavy metals (HMs) in soil. Its spatial distribution and environment risk assessment are extremely important for the management and remediation of HMs. Eighty soil samples were collected from the high-sulfur CG site in northern China and analyzed for six HMs. The results showed that the soil was heavily contaminated by Mn, Cr and Ni based on the Nemerow index, and posed seriously ecological risk depended on the geo-accumulation index, potential ecological risk index and risk assessment code. The semi-variogram model and ordinary kriging interpolation accurately portrayed the spatial distribution of HMs. Fe, Mn, and Cr were distributed by band diffusion, Ni was distributed by core, the distribution of Cu had obvious patchiness and Zn was more uniform. The spatial autocorrelation indicated that all HMs had strong spatial heterogeneity. The BCR sequential extraction was employed to qualify the geochemical fractions of HMs. The data indicated that Fe and Cr were dominated by residual fraction; Cu, Ni and Zn were dominated by reducible and oxidizable fractions; Mn was dominated by reducible and acid-extractable (25.38%-44.67%) fractions. Pearson correlation analysis showed that pH was the main control factor affecting the non-residue fractions of HMs. Therefore, acid production from high sulfur CG reduced soil pH by 2-3, which indirectly promoted the activity of HMs. Finally, the conceptual model of HMs contamination at the CG site was proposed, which can be useful for the development of ecological remediation strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call