Abstract

The sludge fermentation-coupled denitrification process, utilized for sludge reduction and nitrogen removal from wastewater, is frequently hindered by its hydrolysis step’s efficacy. This study addresses this limitation by extending the sludge retention time (SRT) to 120 days. As a result, the nitrate removal efficiency (NRE) of the nitrification-sludge fermentation coupled denitrification (NSFD) pilot system increased from 67.1 ± 0.2 % to 96.7 ± 0.1 %, and the sludge reduction efficiency (SRE) rose from 40.2 ± 0.5 % to 62.2 ± 0.9 %. Longer SRT enhanced predation and energy dissipation, reducing intact cells from 99.2 % to 78.0 % and decreasing particle size from 135.2 ± 4.6 μm and 19.4 ± 2.1 μm to 64.5 ± 3.5 μm and 15.5 ± 1.6 μm, respectively. It also created different niches by altering the biofilm’s adsorption capacity, with interactions between these niches driving improved performance. In conclusion, extending SRT optimized the microbial structure and enhanced the performance of the NSFD system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call