Abstract
As a biorefinery platform host, Escherichia coli has been used extensively to produce metabolites of commercial interest. Integration of foreign DNA onto the bacterial genome allows for stable expression overcoming the need for plasmid expression and its associated instability. Despite the development of numerous tools and genome editing technologies, the question of where to incorporate a synthetic pathway remains unanswered. To address this issue, we studied the genomic expression in E. coli and linked it not only to 26 rationally selected genomic locations, but also to the gene direction in relation to the DNA replication fork, to the carbon and nitrogen source, to DNA folding and supercoiling, and to metabolic burden. To enable these experiments, we have designed a fluorescent expression cassette to eliminate specific local effects on gene expression. Overall it can be concluded that although the expression range obtained by changing the genomic location of a pathway is small compared to the range typically seen in promoter-RBS libraries, the effect of culture medium, environmental stress and metabolic burden can be substantial. The characterization of multiple effects on genomic expression, and the associated libraries of well-characterized strains, will only stimulate and improve the creation of stable production hosts fit for industrial settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.