Abstract
Abstract Radiation and nuclear technologies have side effects in addition to their important applications, so appropriate shields must be used to protect users and the public from high doses as a result of exposure to this radiation. In this work, the attenuation coefficients for polyester composites doped with waste iron filings (IFs) were studied. Six samples of different IF concentrations were manufactured, namely, Poly, Poly-IF20, Poly-IF30, Poly-IF40, Poly-IF50, and Poly-IF60 (where Poly-IF60 represents 40% polyester and 60% IF). We measured the attenuation factors using high purity germanium (HPGe)-detector along with three radioactive sources 241Am (emitting energy of 0.06 MeV), 137Cs (emitting energy of 0.662 MeV), and Co-60 (emitting energy of 1.173 and 1.333 MeV). We compared the linear attenuation coefficient (LAC) obtained by theoretical (i.e., XCOM software) and experimental (i.e., HPGe-detector) approaches for the prepared polyester composites at various photon energies (0.060, 0.662, 1.173, and 1.333 MeV). The greatest difference between the LAC values of the samples occurs at 0.060 MeV, where the Poly-IF60 sample has a much greater LAC than the other shields, followed by the Poly-IF50 sample, Poly-IF40 sample, and so on until the pure polyester shield. Specifically, their values are equal to 0.245, 0.622, 0.873, 1.187, 1.591, and 2.129 cm−1 for Poly, Poly-IF20, Poly-IF30, Poly-IF40, Poly-IF50, and Poly-IF60, respectively. We calculated the transmission factor (TF) and the radiation shielding efficiency (RSE), and found that the TF for Poly-IF30 is equal to 28.82%, 77.94%, 82.75%, and 83.75% at 0.060, 0.662, 1.173, and 1.333, respectively, while its RSE is equal to 82.57%, 24.00%, 18.80%, and 17.72%, respectively. The fast neutron removal cross-section (FNRC) of the polyester samples was calculated and the values increase when more Ifs are added to the samples. More specifically, the FNRC values are equal to 0.095, 0.100, 0.103, 0.107, 0.110, and 0.113 cm−1 for Poly, Poly-IF20, Poly-IF30, Poly-IF40, Poly-IF50, and Poly-IF60, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.