Abstract
The effect of a bridgehead methyl group on the hydride ion affinity in the gas phase of bicyclo[1.1.1]pent-1-yl (1+), 1-norbornyl (3+), cubyl (5+), 1-adamantyl (7+), bicyclo[2.2.2]oct-1-yl (9+),and bicyclo[3.1.1]hept-1-yl (11+) cations has been studied using density functional theory and ab initio methods. It is concluded that the methyl group always increases the stability of the substituted cations. The effect of the solvent on the stability of methyl-substituted cations in relation to the unsubstituted cations has been studied using the polarizable continuum model of the self-consistent reaction field theory. In the case of rearranging cations, the nucleophilic assistance of the solvent is determined by means of the interaction energy of the corresponding water complexes. It is concluded that the solvent causes the relative stabilization of the parent cations. As a consequence, most of the methyl-substituted bridgehead derivatives show a lower solvolysis rate than the corresponding unsubstituted compounds. A nonqualitative explanation of the methyl effect on the relative stability of bridgehead cations in both gas phase and solution is given for the first time. The ratios of solvolysis products in the case of rearranging bridgehead cations have also been computed from the relative stability of the intermediate water complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.