Abstract

The work is aimed at the selection of linear samples of zucchini (Cucurbita pepo L. var. Giromontia Duch.) with increased complex resistance to abiotic factors of cultivation – zucchini yellow mosaic virus (ZYMV), powdery mildew, bacteriosis and other viral pathogens. Selection studies on choosing virus-resistant zucchini lines from the United Kingdom, Italy, the United States and Spain have identified a number of important correlations levels of resistance to ZYMV and to harmful microorganisms and viruses, belonging to other genera. The assessment of the resistance of the selected zucchini lines to the complex of studied diseases was performed on a 9-point scale of the classifier of the Council for Mutual Economic Assistance (CMEA). In total, during 2017–2019, 20 lines of zucchini were studied in the field. According to the complex resistance to all pathogens (zucchini yellow mosaic virus, green speckled mosaic, white mosaic and cucumber mosaic, bacteriosis and fusarium wilt), four lines have been identified – LZ 17-11, RVL-19, LZ 17-45 and LZ 17-49, which were resistant at the level of points 7 and 9 on the scale of CMEA. The possibility of selecting potentially resistant linear zucchini genotypes for ZYMV based on correlations with the manifestation of other diseases that occurred in the field has been confirmed. The highest level of correlation 0.59<rp<1.0) is observed when comparing the degree of powdery mildew development and symptoms of ZYMV (17 statistically confirmed values of the pairwise correlation coefficient or 80.95 %). A similar indicator for the pair “bacteriosis/ZYMV” is 14 statistically confirmed values of the pairwise correlation coefficient or 66.67 % (–1.0<rp<0.99), and for the pair “field viruses of other origin/ZYMV” – 11 values, which is 52.38 % (–1.0<rp<0.93). Zucchini samples were identified, in which statistically significant correlations were observed for all pairs of comparative traits. Among them, the variety-standard Chaklun and 4 more lines – LZ 17-1, LZ 17-8, LZ 17-50 and LZ 17-44 (–1.0<rp<0.92). The analysis of correlations shows a complex genetic organization of signs of resistance in zucchini lines to the studied pathogens and a high dependence of the manifestation of these signs on the response of the genotype of the line. One of the proofs of this experimental fact is that in all comparative pairs of indicators of the degree of development of certain diseases there are linear genotypes with both positive and negative values of Pearson correlation coefficients (rp). The high level of statistically significant correlations revealed gives grounds for wide use of correlation analysis in selection work for choosing lines potentially resistant to the complex of the most common diseases in vegetable agrocenoses

Highlights

  • Materials and Methods The work to study the response of zucchini lines to artificial infection with yellow mosaic virus in the laboratory and field assessment of resistance to other viruses and pathogens was conducted during 2017–2019

  • Exception is 4 lines – LZ 17-4, LZ 17-50, VL-90 and LZ-91, in which this indicator was at the level of resistant genotypes (7 points of the CMEA scale)

  • The group of resistant genotypes (7 points) included the largest number of lines, a total of 16 samples. Another 4 lines showed a moderate response to the defeat of the pathogen “powdery mildew” (5 points)

Read more

Summary

Introduction

Giromontia Duch.) is a vegetable pumpkin plant, the fruits of which begin to be harvested for consumption in the phase of technical ripeness. In the agricultural market of Ukraine the most popular are varieties and hybrids of F1 zucchini with a compact habit of the bush and a yield of not less than 40 t/ha. Zucchini forms are valued during the growing season, in which the phase of technical ripeness of the fruit occurs at 40–42 days, and the fruiting period lasts as long as possible [3,4,5]. All the above Ukrainian varieties and hybrids of F1, as breeding innovations, are characterized by certain economically valuable properties, which are mainly manifested in the agro-climatic conditions, in which they were created

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.