Abstract

In this study, renewable alternative fuel was produced from curry leaf (Murraya koenigii) oil using transesterification technique in the presence of catalyst along with alcohol. The important properties of produced biodiesel were explored in accordance with ASTM and further chemical compositions were explored by means of FTIR and GC–MS analyses. Four different fuel blends like B25, B50, B75 and B100 were developed. To enhance the study, combustion chamber components were transferred into low heat rejection unit by employing thermal barrier coating with Yttria stabilized zirconia. TBC was achieved by means of atmospheric plasma spray coating technique. The engine used for present work was a fully computerized diesel engine with direct injection technique. In coated engine, B25 showed 0.49% of increased thermal efficiency with 0.015 kg/kWh of decreased fuel consumption. Lower tail pipe emissions like carbon monoxide, hydrocarbon and smoke (except NOx) were noticed in ceramic layered engine than uncoated engine. B25 showed improved engine combustion characteristics like combustion chamber pressure, heat release rate and mean gas temperature in ceramic layered condition owing to short ignition delay, elevated combustion temperature, improved turbulence and oxygen presence in the fuel. On the whole, B25 blend experienced more favouring engine characteristics coated engine and B25 with engine modification technique may be recommended as a promising renewable alternative fuel for conventional diesel with minimum blending condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.