Abstract

In spite of active studies on multi-walled carbon nanotube (MWCNT)-incorporated polymer, MWCNTs of different thickness and lengths have been employed. Here, the effects of MWCNT morphology, specifically its length, on the mechanical, thermal, and electrical properties of MWCNT/polymer composites were examined in comparison with theoretical modeling. Field-emission scanning electron microscopy and micro-computed tomography observations revealed that short MWCNTs were dispersed more uniformly than long MWCNTs in a polyamide 6 (PA6) polymer. Correlation of this result with the tensile performance revealed that at low MWCNT concentrations the long-MWCNT/PA6 composite showed superior tensile properties since the effect of length was dominant. However, at high MWCNT concentrations, the short-MWCNT/PA6 showed superior tensile properties to the long-MWCNT/PA6 due to the better dispersion of the former. The thermal conductivity gradually improved with increasing MWCNT concentration, showing larger improvement for the long-MWCNT/PA6, while the electrical conductivity reached percolation threshold at 1 wt% for both MWCNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.