Abstract

Artificial light-harvesting systems (LHSs) with a multi-step sequential energy transfer mechanism significantly enhance light energy utilization. Nonetheless, most of these systems exhibit an overall energy transfer efficiency below 80%. Moreover, due to challenges in molecularly aligning multiple donor/acceptor chromophores, systems featuring ≥3-step sequential energy transfer are rarely reported. Here, a series of artificial LHSs is introduced featuring up to 4-step energy transfer mechanism, constructed using a cyclic peptide-based supramolecular scaffold. These LHSs showed remarkably high energy transfer efficiencies (≥90%) and satisfactory fluorescence quantum yields (ranging from 17.6% to 58.4%). Furthermore, the structural robustness of the supramolecular scaffold enables a comprehensive study of these systems, elucidating the associated energy transfer pathways, and identifying additional energy transfer processes beyond the targeted sequential energy transfer. Overall, this comprehensive investigation not only enhances the understanding of these LHSs, but also underscores the versatility of cyclic peptide-based supramolecular scaffolds in advancing energy harvesting technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.