Abstract

Research in presentation attack detection (PAD) for iris recognition has largely moved beyond evaluation in “closed-set” scenarios, to emphasize ability to generalize to presentation attack types not present in the training data. This paper offers multiple contributions to understand and extend the state-of-the-art in open-set iris PAD. First, it describes the most authoritative evaluation to date of iris PAD. We have curated the largest publicly-available image dataset for this problem, drawing from 26 benchmarks previously released by various groups, and adding 150,000 images being released with this paper, to create a set of 450,000 images representing authentic iris and seven types of presentation attack instrument (PAI). We formulate a leave-one-PAI-out evaluation protocol, and show that even the best algorithms in the closed-set evaluations exhibit catastrophic failures on multiple attack types in the open-set scenario. This includes algorithms performing well in the most recent LivDet-Iris 2020 competition, which may come from the fact that the LivDet-Iris protocol emphasizes sequestered images rather than unseen attack types. Second, we evaluate the accuracy of five open-source iris presentation attack algorithms available today, one of which is newly-proposed in this paper, and build an ensemble method that beats the winner of the LivDet-Iris 2020 by a substantial margin. This paper demonstrates that closed-set iris PAD, when all PAIs are known during training, is a solved problem, with multiple algorithms showing very high accuracy, while open-set iris PAD, when evaluated correctly, is far from being solved. The newly-created dataset, new open-source algorithms, and evaluation protocol, all made publicly available with this paper, provide experimental artifacts that researchers can use to measure progress on this important problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.