Abstract

Pakistan has long been considered neglected endemic region for Echinococcus granulosus. Limited surveillance studies have failed to epidemiologically draw complete picture on geographical presence and etiological agents of cystic echinococcosis. Amidst such lacunae, current study explored main transmission routes of this disease through molecular characterization of hydatid cyst isolates obtained from sheep (n = 35), goats (n = 26), cattle (n = 30) and buffalo (n = 30) from the four provinces of Pakistan. Two strains of E. granulosus sensu stricto, G1/G3, and their haplotypes were observed to be cycling in sympatry in the domestic ungulate populations. G3 genotype had higher prevalence (66.94%) in the hosts compared to G1 genotype (33.06%) which was not surprising, considering the large buffalo population in Pakistan. Haplotypic analysis revealed presence of 9 different haplotypes configured in a double clustered network with two centrally positioned haplotypes referred to as G3 (PKH1) and G1 (PKH6). Population demographics and genetic variability indices suggested expanding parasitic population in multiple host spectrum. Elucidating local transmission patterns of E. granulosus sensu stricto, buffalo-dog cycle emerged as one of the dominant causes of G3 dispersal in contrary to other global studies. Adaptability of G3 to environmental conditions of Pakistan and high affinity for buffaloes emphasize on heterogeneous nature of this strain in contrast to G1. However, more studies involving larger datasets and mitochondrial sequences could confirm this hypothetically formulated inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.