Abstract

Advanced metal/high-k/Ge gate stacks with a sub-nm equivalent oxide thickness (EOT) and improved interface properties were demonstrated by controlling interface reactions using ultrathin aluminum oxide (AlOx) interlayers. A step-by-step in situ procedure by deposition of AlOx and hafnium oxide (HfOx) layers on Ge and subsequent plasma oxidation was conducted to fabricate Pt/HfO2/AlOx/GeOx/Ge stacked structures. Comprehensive study by means of physical and electrical characterizations revealed distinct impacts of AlOx interlayers, plasma oxidation, and metal electrodes serving as capping layers on EOT scaling, improved interface quality, and thermal stability of the stacks. Aggressive EOT scaling down to 0.56 nm and very low interface state density of 2.4 × 1011 cm−2eV−1 with a sub-nm EOT and sufficient thermal stability were achieved by systematic process optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.