Abstract

Data clustering has found significant applications in various domains like bioinformatics, medical data, imaging, marketing study and crime analysis. There are several types of data clustering such as partitional, hierarchical, spectral, density-based, mixture-modeling to name a few. Among these, partitional clustering is well suited for most of the applications due to the less computational requirement. An analysis of various literatures available on partitional clustering will not only provide good knowledge, but will also lead to find the recent problems in partitional clustering domain. Accordingly, it is planned to do a comprehensive study with the literature of partitional data clustering techniques. In this paper, thirty three research articles have been taken for survey from the standard publishers from 2005 to 2013 under two different aspects namely the technical aspect and the application aspect. The technical aspect is further classified based on partitional clustering, constraint-based partitional clustering and evolutionary programming-based clustering techniques. Furthermore, an analysis is carried out, to find out the importance of the different approaches that can be adopted, so that any new development in partitional data clustering can be made easier to be carried out by researchers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.