Abstract

Biogenic amine receptors play critical roles in regulating behavior and physiology in both vertebrates and invertebrates, particularly within the central nervous system. Members of the G-protein coupled receptor (GPCR) family, these receptors interact with endogenous bioamine ligands such as dopamine, serotonin, and epinephrine, and are targeted by a wide array of pharmaceuticals. Despite the clear clinical and biological importance of these receptors, their evolutionary history remains poorly characterized. In particular, the relationships among biogenic amine receptors and any specific evolutionary constraints acting within distinct receptor subtypes are largely unknown. To advance and facilitate studies in this receptor family, we have constructed a comprehensive, high-quality sequence alignment of vertebrate biogenic amine receptors. In particular, we have integrated a traditional multiple sequence approach with robust structural domain predictions to ensure that alignment columns accurately capture the highly-conserved GPCR structural domains, and we demonstrate how ignoring structural information produces spurious inferences of homology. Using this alignment, we have constructed a structurally-partitioned maximum-likelihood phylogeny from which we deduce novel biogenic amine receptor relationships and uncover previously unrecognized lineage-specific receptor clades. Moreover, we find that roughly 1% of the 3039 sequences in our final alignment are either misannotated or unclassified, and we propose updated classifications for these receptors. We release our comprehensive alignment and its corresponding phylogeny as a resource for future research into the evolution and diversification of biogenic amine receptors.

Highlights

  • Biogenic amines such as the molecules serotonin and dopamine play critical roles in virtually all Metazoans and exert significant influence on both behavior and physiology

  • Like all G-protein coupled receptor (GPCR), biogenic amine receptors have a characteristic, highly-conserved structure of seven transmembrane (TM) domains separated by three extracellular (ECL) and three intracellular (ICL) loops, and they propagate intracellular signaling through a G-protein-mediated pathway

  • We used our structurally-informed multiple sequence alignment (MSA) to build a maximum likelihood (ML) phylogeny of vertebrate biogenic amine receptors, and we found that a partitioned phylogeny which separately considered TM and extramembrane (EM) domains dramatically improved phylogenetic fit relative to an unpartitioned phylogeny

Read more

Summary

Introduction

Biogenic amines such as the molecules serotonin and dopamine play critical roles in virtually all Metazoans and exert significant influence on both behavior and physiology. Like all GPCRs, biogenic amine receptors have a characteristic, highly-conserved structure of seven transmembrane (TM) domains separated by three extracellular (ECL) and three intracellular (ICL) loops, and they propagate intracellular signaling through a G-protein-mediated pathway. These receptors are prominent targets for a wide range of pharmaceuticals aimed to treat myriad diseases such as schizophrenia, migraines, hypertension, allergies and asthma, and stomach ulcers (Schoneberg et al, 2004; Evers et al, 2005; Mason et al, 2012)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call