Abstract

Herein, a comprehensive kinetic study is performed to compare the catalytic efficiency of 2-azaadamantane N-oxyl (AZADO) derivatives with that of 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) used as radical catalysts in the aerobic oxidation of l-menthol. Furthermore, the correlation between the catalytic activity and structural/electronic parameters of AZADOs and TEMPO is elucidated. The reaction rate constants achieved with several AZADO derivatives exhibit moderate relationships with spectroscopic parameters, such as the hyperfine coupling constant of the N atom (AN) and NO stretching vibration frequency (νNO) observed in electron spin resonance and infrared spectra, respectively. The planarity C-(NO)-C angle (φ) at the N atom, determined by density functional theory (DFT) calculations, also strongly correlates with the AN and νNO. Moreover, the bond order of NO, which strongly depends on the structural and electronic properties of NO radicals, correlates with radical activity; thus, the radical activity can be predicted by DFT calculations, thereby accelerating the synthesis of new AZADO derivatives without requiring alcohol oxidation experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call