Abstract

Radezolid (RAD, 12), biaryl oxazolidinone, was synthesised with small modifications according to the methods described in the literature. The pharmacological activity is observed only for (S)-enantiomer, therefore its synthesis is oriented towards obtaining a single isomer of required purity and desired optical configuration. The intermediate products of RAD synthesis were characterised using 1H- and 13C-NMR, as well as the 2D correlation HSQC and HMBC (2, 5, 9, 10), furthermore studied using infrared radiation (FT-IR), Raman scattering (3, 5, 9), and electronic circular dichroism (ECD) (5, 12) spectroscopy. Each technique provides a unique and specific set of information. Hence, the full spectral characteristics of key intermediates obtained from the chiral pool synthesis to the finished product of RAD were summarised and compared. For a more accurate analysis, and due to the lack of reliable and reproducible reference standards for intermediate products, their vibrational analysis was supported by quantum chemical calculations based on the density functional theory (DFT) utilising the B3LYP hybrid functional and the 6-311G(d,p) basis set. Good agreement was observed between the empirical and theoretical spectra.Graphical abstractComprehensive spectral identification (ECD, NMR, FT-IR, Raman) of key intermediates of the chiral pool synthesis of radezolid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.