Abstract
A relativistic density functional theory description of the electronic structure of Tc(2)O(7) has been evaluated by comparison with solid-state (99)Tc and (17)O NMR spectroscopic data (the former isotope is a weak β emitter). Every site in the molecule can be populated by a nucleus with favorable NMR characteristics, providing the rare opportunity to obtain a comprehensive set of chemical shift and electric field gradient tensors for a small molecular transition-metal oxide. NMR parameters were computed for the central molecule of a (Tc(2)O(7))(17) cluster using standard ZORA-optimized all-electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. The magnitudes of the predicted tensor principal values appear to be uniformly larger than those observed experimentally, but the discrepancies were within the accuracy of the approximation methods used. The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.