Abstract

Ascidian embryos highlight the importance of cell lineages in animal development. As simple proto-vertebrates they also provide insights into the evolutionary origins of novel cell types, such as cranial placodes and neural crest. To build upon these efforts we have determined single cell transcriptomes for more than 90,000 cells spanning the entirety of Ciona intestinalis development, from the onset of gastrulation to swimming tadpoles. This represents an average of over 12-fold coverage for every cell at every stage of development, owing to the small cell numbers of ascidian embryos. Single cell transcriptome trajectories were used to construct “virtual” cell lineage maps and provisional gene networks for nearly 40 different neuronal subtypes comprising the larval nervous system. We summarize several applications of these datasets, including annotating the synaptome of swimming tadpoles and tracing the evolutionary origin of novel cell types such as the vertebrate telencephalon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.