Abstract

BackgroundSensitive and reliable molecular diagnostics is needed to guide therapeutic decisions for cancer patients. Although less material becomes available for testing, genetic markers are rapidly expanding. Simultaneous detection of predictive markers, including mutations, gene amplifications and MSI, will save valuable material, time and costs.MethodsUsing a single-molecule molecular inversion probe (smMIP)-based targeted next-generation sequencing (NGS) approach, we developed an NGS panel allowing detection of predictive mutations in 33 genes, gene amplifications of 13 genes and microsatellite instability (MSI) by the evaluation of 55 microsatellite markers. The panel was designed to target all clinically relevant single and multiple nucleotide mutations in routinely available lung cancer, colorectal cancer, melanoma, and gastro-intestinal stromal tumor samples, but is useful for a broader set of tumor types.ResultsThe smMIP-based NGS panel was successfully validated and cut-off values were established for reliable gene amplification analysis (i.e. relative coverage ≥3) and MSI detection (≥30% unstable loci). After validation, 728 routine diagnostic tumor samples including a broad range of tumor types were sequenced with sufficient sensitivity (2.4% drop-out), including samples with low DNA input (< 10 ng; 88% successful), low tumor purity (5–10%; 77% successful), and cytological material (90% successful). 75% of these tumor samples showed ≥1 (likely) pathogenic mutation, including targetable mutations (e.g. EGFR, BRAF, MET, ERBB2, KIT, PDGFRA). Amplifications were observed in 5.5% of the samples, comprising clinically relevant amplifications (e.g. MET, ERBB2, FGFR1). 1.5% of the tumor samples were classified as MSI-high, including both MSI-prone and non-MSI-prone tumors.ConclusionsWe developed a comprehensive workflow for predictive analysis of diagnostic tumor samples. The smMIP-based NGS analysis was shown suitable for limited amounts of histological and cytological material. As smMIP technology allows easy adaptation of panels, this approach can comply with the rapidly expanding molecular markers.

Highlights

  • Sensitive and reliable molecular diagnostics is needed to guide therapeutic decisions for cancer patients

  • We developed a comprehensive workflow for predictive analysis of diagnostic tumor samples

  • The smMIPbased next generation sequencing (NGS) analysis was shown suitable for limited amounts of histological and cytological material

Read more

Summary

Introduction

Sensitive and reliable molecular diagnostics is needed to guide therapeutic decisions for cancer patients. As molecular markers are constantly expanding, predictive analysis should be adaptable to future clinical need In this era of personalized medicine, generation sequencing (NGS) analysis using gene panels is increasingly becoming a standard diagnostic approach as interrogation of multiple molecular markers is required with only a limited amount of (mostly) formalin-fixed, paraffin-embedded (FFPE) tissue [3]. These markers include a spectrum of genetic alterations, ranging from small base pair alterations (e.g. point mutations, small deletions, or small insertions) to larger structural variants (e.g. translocations, amplifications, or deletions) affecting genes or large regions of chromosomes. Mismatch repair deficiency, causing instability of repetitive DNA sequences known as microsatellites, was shown to be predictive for response to immune checkpoint blockade for a range of tumor types [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call