Abstract

Abstract Challenges to low-dose linearity and other default assumptions in cancer risk assessment and the limitations associated with NOAELs, LOAELs, and constant uncertainty factor values in the evaluation of noncancer health effects have stimulated the continued evolution of risk assessment methodologies. The increasing need for more realistic estimates of the dose-response relationship, better uncertainty characterization, and greater utilization of cost-benefit analyses have also contributed to this evolution. “Comprehensive Realism” is an emerging quantitative weight-of-evidence based risk assessment methodology for both cancer and noncancer health effects which utilizes probability distributions and decision analysis techniques to reflect more of the relevant human exposure data, more of the available and pertinent human and animal dose-response data, and the current state of knowledge about the relative plausibility of alternative dose-response analyses. A tree (like a decision tree and a probabili...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.