Abstract
Autophagy is a bulk protein degradation system for the entire organelles and cytoplasmic proteins. Previously, we have shown the liver dysfunction by autophagy deficiency. To examine the pathological effect of autophagy deficiency, we examined protein composition and their levels in autophagy-deficient liver by the proteomic analysis. While impaired autophagy led to an increase in total protein mass, the protein composition was largely unchanged, consistent with non-selective proteins/organelles degradation of autophagy. However, a series of oxidative stress-inducible proteins, including glutathione S-transferase families, protein disulfide isomerase and glucose-regulated proteins were specifically increased in autophagy-deficient liver, probably due to enhanced gene expression, which is induced by accumulation of Nrf2 in the nuclei of mutant hepatocytes. Our results suggest that autophagy deficiency causes oxidative stress, and such stress might be the main cause of liver injury in autophagy-deficient liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.