Abstract
Pediatric high-grade gliomas (pHGG) are brain tumors occurring in children and adolescents associated with a dismal prognosis despite existing treatments. Therapeutic failure in both adult and pHGG has been partially imputed to glioma stem cells (GSC), a subset of cancer cells endowed with stem-like cell potential and malignant, invasive, adaptative, and treatment-resistant capabilities. Whereas GSC have largely been portrayed in adult tumors, less information has been provided in pHGG. The aim of our study was to comprehensively document the stem-like capacities of seven in-use pediatric glioma cell cultures (Res259, UW479, SF188, KNS42, SF8628, HJSD-DIPG-007 and HJSD-DIPG-012) using parallel in vitro assays assessing stem cell-related protein expression, multipotency, self-renewal and proliferation/quiescence, and in vivo investigation of their tumorigenicity and invasiveness. Data obtained from in vitro experiments revealed glioma subtype-dependent expression of stem cell-related markers and varying abilities for differentiation, self-renewal, and proliferation/quiescence. Among tested cultures, DMG H3-K27 altered cultures displayed a particular pattern of stem-like markers expression and a higher fraction of cells with self-renewal potential. Four cultures displaying distinctive stem-like profiles were further tested for their ability to initiate tumors and invade the brain tissue in mouse orthotopic xenografts. The selected cell cultures all showed a great tumor formation capacity, but only DMG H3-K27 altered cells demonstrated a highly infiltrative phenotype. Interestingly, we detected DMG H3-K27 altered cells relocated in the subventricular zone (SVZ), which has been previously described as a neurogenic area, but also a potential niche for brain tumor cells. Finally, we observed an SVZ-induced phenotypic modulation of the glioma cells, as evidenced by their increased proliferation rate. In conclusion, this study recapitulated a systematic stem-like profiling of various pediatric glioma cell cultures and call to a deeper characterization of DMG H3-K27 altered cells nested in the SVZ.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.