Abstract

This paper presents a comprehensive model predictive control (CMPC) method to control a three-phase four-legged inverter (TP4LI) for PV systems. The proposed TP4LI model aims to predictively model and control switching frequency and higher voltage/current switching to reduce losses. The CMPC model can be operated in four modes, namely standard MPC mode (Mode I), switching frequency reduction (SFR) mode (Mode II), high voltage/current switching loss reduction (SLR) mode (Mode III), and SFR plus SLR mode (Mode IV, a combination of Modes II and III). The proposed CMPC approach controls the TP4LI to (1) successfully track balanced and unbalanced reference currents with balanced or unbalanced loads; (2) reduce switching losses; and (3) keep the generated current total harmonic distortion (THD) within the industry’s recommended limits. The TP4LI model with the CMPC approach was verified and validated in the MATLAB/Simulink for a PV system. The simulation results show good tracking and performance of the TP4LI for balanced and unbalanced reference currents with balanced and unbalanced loads in all four modes of operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call