Abstract

The contact friction characteristic between a tyre and the road is a key factor that dominates the dynamics performance of a vehicle under critical conditions. Vehicle dynamics control systems, such as anti-lock braking systems, traction control systems, and electronic stability control systems (e.g. Elektronisches Stabilitäts Programm (ESP)), need an accurate road friction coefficient to adjust the control mode. No time delay in the estimation of road friction should be allowed, thereby avoiding the disappearance of the optimal control point. A comprehensive method to predict the road friction is suggested on the basis of the sensor fusion method, which is suitable for variations in the vehicle dynamics characteristics and the control modes. The multi-sensor signal fusion method is used to predict the road friction coefficient for a steering manoeuvre without braking; if active braking is involved, simplified models of the braking pressure and tyre force are adopted to predict the road friction coefficient and, when high-intensity braking is being considered, the neural network based on the optimal distribution method of the decay power is applied to predict the road friction coefficient. The method is validated through a ground test under complicated manoeuvre conditions. It was verified that the comprehensive method predicts the road friction coefficient promptly and accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.