Abstract

To characterise the effects of high-salt diet (HSD) on left ventricular (LV) mass, systolic function and coronary reserve in living mice using cardiac magnetic resonance imaging (MRI). Thirty C57BL/6 1-month-old female mice were fed either a control (n = 15) or an HSD (n = 15). After 3 months, LV volumes, ejection fraction and mass were assessed using time-resolved three-dimensional (3D) black-blood manganese-enhanced MRI, and coronary flow velocity reserve (CFVR) was assessed using dynamic MR angiography at rest and during adenosine-induced hyperaemia. Hearts were excised to assess LV wet mass and micro-vascular remodelling at histology. Micro-vascular remodelling was found at histology in all investigated hearts from the HSD group and none from the control group. No difference between the HSD and control groups was found in terms of heart weight, LV volumes and ejection fraction. Heart to body weight ratio was higher in the HSD group (4.39 ± 0.24 vs 4.02 ± 0.16 mg/g, P < 0.001), because of lower body weight (22.3 ± 0.9 vs 24.0 ± 1.4 g, P < 0.001). CFVR was lower in the HSD group (1.73 ± 0.11 vs 1.94 ± 0.12, P < 0.001). Phenotyping of hypertensive heart disease is feasible in living mice using dynamic MR angiography and time-resolved 3D black-blood manganese-enhanced MRI. HSD is associated with early impairment of coronary reserve, before the onset of significant hypertrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.