Abstract
Latent heat thermal energy storage (LHTES) utilizing phase change material (PCM) is one of the critical enablers in developing sustainable and low-carbon energy systems. To fill the knowledge gap, this paper presents an enthalpy-based solid–liquid model through the lattice Boltzmann method (LBM) with a multi-relaxation-time (MRT) approach, aiming to simulate convective phase change in LHTES units with and without porous media in Cartesian or axisymmetric domains. To improve accuracy and efficiency, the model integrates a differential scanning calorimetry (DSC) correlated equation for enthalpy modeling, couples with a 1D heat-transfer-fluid (HTF) model for boundary treatment of HTF side, and employs a parallel LBM scheme for efficient parametric studies. The validation demonstrates the model’s success in predicting PCM phase change, with errors below 10%. A comprehensive numerical analysis is then conducted to quantitatively evaluate the effect of convection on PCM melting. Novel metrics, such as acceleration rates (ac) of PCM melting and threshold Rayleigh numbers (Radc) at various aspect ratios, are introduced. Furthermore, PCM melting in the porous cylindrical unit is explored. Findings reveal up to 86% acceleration in melting compared to pure PCM at 80% energy storage, and the porous media with porosity above 0.9 is recommended for thermal enhancement. Moreover, this paper analyzes the negative effect of uneven temperature distributions caused by convection on LHTES unit efficiency. A modified LHTES unit geometry is proposed to offset this negative effect, and the study demonstrates successful mitigation of uneven temperature distributions, achieving up to 57 % acceleration in PCM melting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.