Abstract

Metabolomics has been a potential tool for strain improvement through analyzing metabolite changes in the context of different conditions. However, the availability of a universal metabolite profiling analysis is still a big challenge. In this study, we presented an optimized liquid chromatography-tandem mass spectrometry-based metabolomics methodology for Corynebacterium glutamicum, an important industrial workhorse. It was found that quenching the cellular metabolism with 5-fold volume of - 20°C 40% methanol was highly recommended due to its lower cell damage rate and higher intracellular metabolite recovery rate. For extracting intracellular metabolites, ethanol/water (3:1, v/v) at 100°C combined with acidic acetonitrile/water (1:1, v/v, with 0.1% formic acid) at - 20°C achieved the unbiased metabolite profiling of C. glutamicum. The established methodology was then applied to investigate the intracellular metabolite differences between C. glutamicum ATCC 13032 and an mscCG-deleted mutant under biotin limitation condition. It was observed that in the presence of the functional L-glutamate exporter MscCG, biotin limitation led to accumulation of intracellular 2-oxoglutarate but not L-glutamate. Deletion of mscCG severely inhibited L-glutamate excretion and resulted in a dramatical increase of intracellular L-glutamate, which in turn affected the metabolite profile. The optimized metabolomics methodology holds promise for promoting studies on metabolic mechanism of C. glutamicum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call