Abstract

The adaptation of colloidal quantum dots loaded within a polymer for use in nondestructive testing can be used as an optical strain gauge due to the nanomaterial's strain sensing properties. In this paper, we utilized InP/ZnS colloidal quantum dots loaded within a polymer matrix applied onto the surface of a dog-bone foil precoated with an epoxy. By employing an empirical formula and a calibration factor, there is a propinquity between both the calculated optical strain and mechanical stress-strain reference data. Fluctuations are observed, which may be due to both additional strain responses not seen by the mechanical data and quantum dot blinking. These results and methods show the applied use of this novel optical nondestructive testing technique for a variety of structures, especially for structures that operate in harsh environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.