Abstract
Oxygenated volatile organic compounds (OVOCs) play important roles in tropospheric chemistry, regulating the oxidation capacity and ozone (O3) formation potential of the atmosphere. However, the evolution of OVOCs composition during vertical transport from the near surface to the upper atmosphere layer and the roles of OVOCs in the alpine atmospheric O3 formation are still poorly understood. In this study, we investigated the carbonyl compounds, the most important chemical group of OVOCs, and other gaseous pollutants simultaneously collected at the top (2060 m a.s.l, Top) and the foot (402 m a.s.l, Foot) of Mt. Hua in August 2020. The average concentrations of the total quantified carbonyl compounds (∑carbonyls) at the Top and Foot were 16.05 ± 3.69 and 15.32 ± 5.63 ppbv, respectively. Acetone was the most abundant carbonyl (4.19 ± 1.01 ppbv) at the Top, followed by formaldehyde and n-Nonanal, accounting for ∼58.8 % of ∑carbonyls, while formaldehyde (5.40 ± 2.26 ppbv), acetone, and acetaldehyde were the three most abundant species at the Foot, accounting for 64.7 % of ∑carbonyls. The n-Nonanal, acetone and acetaldehyde showed positive correlations between the Top and Foot during daytime, confirming the vertical transport of carbonyls from the foot to the top of Mt. Hua under the influence of valley winds. The direct emissions from vegetation, transport processes of anthropogenic emissions and photochemical oxidation contributed significantly to the measured carbonyls at the Top, especially for acetone. Formaldehyde, acetaldehyde, glyoxal, and methylglyoxal were the most important contributors to the O3 generation in Mt. Hua. This study could advance our understanding of the vertical distribution of the carbonyls and the effects on O3 formation in the alpine region of China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.