Abstract

Abstract Printed circuit heat exchanger (PCHE), as a high-efficiency and compact heat exchanger, shows a high potential in high temperature, high pressure, and some extreme environments, thus, it is widely used in nuclear power generation, refrigeration, aerospace, etc. In this paper, the flow and heat transfer characteristics of heat transfer channels with different fins were numerically analyzed, by changing helium inlet temperature and mass flowrate. The results indicate that, with the increase of helium mass flowrate, Nusselt number and pressure loss grow, while Colburn factor and Fanning friction factor drop. As helium inlet temperature rises, Nusselt number, Colburn factor, and pressure loss grow, whereas Fanning friction factor decreases. In addition, the heat transfer characteristics of the channels with different fins are higher than that of the finless channel, among which the circular finned channel has the best heat transfer performance. In spite of a slightly degraded flow performance, the comprehensive performance of the finned channels is superior to that of the finless channel, and the elliptical finned channel has the best performance, followed by airfoil finned channel and circular finned channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.