Abstract

A comprehensive product study, performed via the turbulent flow chemical ionization mass spectrometry (TF-CIMS) technique, of the primary OH-initiated oxidation of many of the atmospherically abundant aromatic compounds was performed. The bicyclic peroxy radical intermediate, a key proposed intermediate species in the Master Chemical Mechanism (MCM) for the atmospheric oxidation of aromatics, was detected in all cases, as were stable bicyclic species. The NO product yield dependences suggest a potential role for bicyclic peroxy radical + HO(2) reactions at high HO(2)/NO ratios, which are postulated to be a possible source of the inconsistencies between previous environmental chamber results and predictions from the MCM for ozone production and OH reactivity. The TF-CIMS product yield results are also compared to previous environment chamber results and to the latest MCM parametrization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.