Abstract

Background: Frankincense and myrrh (FM) are often used together to treat knee osteoarthritis (KOA). However, the underlying mechanism of its treatment of KOA remains unclear. Objective: To analyze the active components of FM through network pharmacology and in vitro experiments, and to explore its potential therapeutic mechanism in the treatment of KOA. Materials and methods: The protein mapping relationship between potential drug targets and disease targets was screened and constructed through the database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Discovery Studio software was used to perform molecular docking. The active components of FM were identified using liquid chromatography–mass spectrometry (LC-MS). In addition, experimental verification was carried out by Cell Counting Kit-8 detection, Western blot, and immunofluorescence analysis. Results: Combining the results of network pharmacology and LC-MS, 31 active compounds and 94 target genes of FM were identified. The common genes of FM and KOA suggest that FM exerts anti-KOA effect by regulating genes such as Transcription factor Jun (JUN), Interleukin-6 (IL-6), Interleukin-1 beta (IL-1β), C-X-C motif chemokine ligand 8 (CXCL8), Transcription factor p65 (RELA), and Mitogen-activated protein kinase 1 (MAPK1). GO enrichment analysis showed that FM exerted therapeutic effects on KOA by regulating biological processes such as cell proliferation, cell migration, and apoptosis. In addition, KEGG enrichment analysis involved signaling pathways such as fluid shear stress, the TNF, PI3K-Akt, NF-κB, and MAPK. Consistently, in vivo experiments showed that FM inhibited IL-1β-induced MAPK activation and attenuated inflammation in mouse chondrocytes. Furthermore, FM inhibited IL-1β-induced phosphorylation of p65 and the process of p65 translocation from the cytoplasm into the nucleus. Conclusions: Our results provide conclusive evidence and deepen the current understanding of FM in the treatment of KOA and further support its clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.