Abstract
Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of regulatory programs this variation affects can shed light on the apparatuses of human diseases. We collected epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we constructed networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks served as the base for a rich series of analyses, through which we demonstrated their temporal dynamics and enrichment for various disease-associated variants. We applied the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrated methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays. Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes. This includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.